A Security Analysis of Deoxys and its Internal Tweakable Block Ciphers
نویسندگان
چکیده
In this article, we provide the first independent security analysis of Deoxys, a third-round authenticated encryption candidate of the CAESAR competition, and its internal tweakable block ciphers Deoxys-BC-256 and Deoxys-BC-384. We show that the related-tweakey differential bounds provided by the designers can be greatly improved thanks to a Mixed Integer Linear Programming (MILP) based search tool. In particular, we develop a new method to incorporate linear incompatibility in the MILP model. We use this tool to generate valid differential paths for reduced-round versions of Deoxys-BC-256 and Deoxys-BC-384, later combining them into broader boomerang or rectangle attacks. Here, we also develop a new MILP model which optimises the two paths by taking into account the effect of the ladder switch technique. Interestingly, with the tweak in Deoxys-BC providing extra input as opposed to a classical block cipher, we can even consider beyond full-codebook attacks. As these primitives are based on the TWEAKEY framework, we further study how the security of the cipher is impacted when playing with the tweak/key sizes. All in all, we are able to attack 10 rounds of Deoxys-BC-256 (out of 14) and 13 rounds of Deoxys-BC-384 (out of 16). The extra rounds specified in Deoxys-BC to balance the tweak input (when compared to AES) seem to provide about the same security margin as AES-128. Finally we analyse why the authenticated encryption modes of Deoxys mostly prevent our attacks on Deoxys-BC to apply to the authenticated encryption primitive.
منابع مشابه
Tweaks and Keys for Block Ciphers: The TWEAKEY Framework
We propose the TWEAKEY framework with goal to unify the design of tweakable block ciphers and of block ciphers resistant to related-key attacks. Our framework is simple, extends the key-alternating construction, and allows to build a primitive with arbitrary tweak and key sizes, given the public round permutation (for instance, the AES round). Increasing the sizes renders the security analysis ...
متن کاملImpossible Differential Cryptanalysis on Deoxys-BC-256
Deoxys is a final-round candidate of the CAESAR competition. Deoxys is built upon an internal tweakable block cipher Deoxys-BC, where in addition to the plaintext and key, it takes an extra non-secret input called a tweak. This paper presents the first impossible differential cryptanalysis of Deoxys-BC-256 which is used in Deoxys as an internal tweakable block cipher. First, we find a 4.5-round...
متن کاملBeyond-Birthday-Bound Security Based on Tweakable Block Cipher
This paper studies how to build a 2n-bit block cipher which is hard to distinguish from a truly random permutation against attacks with q ≈ 2 queries, i.e., birthday attacks. Unlike previous approaches using pseudorandom functions, we present a simple and efficient proposal using a tweakable block cipher as an internal module. Our proposal is provably secure against birthday attacks, if underly...
متن کاملXHX - A Framework for Optimally Secure Tweakable Block Ciphers from Classical Block Ciphers and Universal Hashing
Tweakable block ciphers are important primitives for designing cryptographic schemes with high security. In the absence of a standardized tweakable block cipher, constructions built from classical block ciphers remain an interesting research topic in both theory and practice. Motivated by Mennink’s F̃ [2] publication from 2015, Wang et al. proposed 32 optimally secure constructions at ASIACRYPT’...
متن کاملA Note on the CLRW2 Tweakable Block Cipher Construction
In this note, we describe an error in the proof for CLRW2 given by Landecker et al. in their paper at CRYPTO 2012 on the beyond-birthday-bound security for tweakable block ciphers. We are able to resolve the issue, give a new bound for the security of CLRW2, and identify a potential limitation of this proof technique when looking to extend the scheme to provide asymptotic security.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Trans. Symmetric Cryptol.
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017